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This paper presents vibration analysis of plates by the Rayleigh·Ritz method with orthogonal polynomials derived by the
Gram·Schmidt Process as displacement functions, and Gauss-Legendre Quadrature as an integration scheme. A computer program
was developed and numerical results by this computation were in good accord with those obtained by using other beam functions.
Furthermore, the present method was shown to resolve various problems encountered in the application of existing methods.

Key Words: Orthogonal Polynomials, Gram-Schmidt Process, Gauss-Legendre Quadrature, Orthogonality Properties,
Beam Function.

NOMENCLATURE------------

a, b : Length scale of rectangular plate in x and y direc-
tions, respectively

C : Clamped edge indicater
D : Flexural rigidity, Eh 3

/ {l2(l- ))2))
E : Young's modulus
F : Free edge indicator
S : Simply-supported edge indicator
T max : Maximum total kinetic energy
Umax : Maximum total strain energy
Xm('rl, Yn(Y) : Orthogonal set of polynomials
(l : Aspect ratio
IjJ(x) : Orthogonal polynomial
(j) : Circular frequency
,1 : Frequency parameter
)) : Poisson's ratio
p : Mass density per unit area of plate

1. INTRODUCTION

Plates are important structural components extensively
used such as in bridges, ship deck-plates, railroads and air­
craft structures. For reliable design and safe use, it is essen­
tial to assess dynamic properties of such plates. Therefore, a
number of studies on vibration characteristics of plates have
been carried out by using the Rayleigh or Rayleigh-Ritz
method(Young, 1950; Warburton, 1954; Hearmon et aJ.,
1959), the Galerkin method (Munakata, 1952; Stanisic et aI.,
1957), the finite difference method (Hidaka, 1951; Nishimura,
1953; Abramowitz et aJ., 1955) and other numerical methods
(Cheung, 1971; Hooker et al., 1974). In the application of
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these methods, the suitable selection of admissible functions
is a key for obtaining accurate results. Dickinson(1978) and
Mizusawa(l986) employed a simply supported(S.S.) function
and B-spline function respectively in the Rayleigh-Ritz
method.

These functions proposed in the past studies, however, have
limitations in general application. For instance, the S.s.
function yields results in good agreement with those obtained
by beam function for plates with two parallel edges simply
supported. But the solutions become less accurate for plates
with one or more free edges. In methods by finite elements,
error generally may occur by degree of discretization.
Trigonometric beam functions often induce complexity in
integration.

In this study, a computer program was developed to solve
the above-mentioned problems and to simplify the vibration
analysis.

This computation employs orthogonal polynomials
obtained by the Gram-Schmidt process as displacement func­
tions in the Rayleigh-Ritz method. Integration was done with
Gauss-Legendre quadrature for all possible boundary condi­
tions in vibration of plates. To verify validity of the present
method, computed results were compared with those by
Leissa(1973) and Dickinson(1982).

2. METHOD OF ANALYSIS

2.1 Application of Rayleigh-Ritz Method
A rectangular plate as shown in Fig. 1 is used to analyze

vibration characteristics. The assumed transverse displace­
ment function W (x, y) is given by

where Xm(x) and Yn(Y) are functions of characteristic
orthogonal polynomials, and x and y represent the normal­
ized directions, x = ~/a, Y = TJ/ b respectively.

The maximum potential energy Umax stored in the stressed
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2.2 Orthogonal Polynomials by Gram-Schmidt
Process

In the interval [a, b], polynomial functions {cPo, cP" cP2, "',
cP., "', cPn} for weight function ware defined as

B,= [xw(x)(cPo(x))'dx / [w(x)(cPo(x)]2dx (10)

4

1 3 .,

2

•

~ clamped edges:C

II 5 imply supported edges

, S

free edges: F

where

cPo(X) : function satisfying orghogonality
r/>,(X)=(X-B,)cPo(X)

(8)
(9)

Fig. 1 Rectangular plate and symbols for boundary conditions
When k";j;2,

(H)
elastic body is given by Love's theory as follows.

And the maximum kinetic energy T max is represented by

1 1'1'[( a
2
w )2 ( a

2
W )2Umax=2Dab 0 0 aX 2 +a

4
ay2

2a
2
Wa

2
W 2( a

2
W )2J+2va ax2ay2 +2(1-v)a axay dxdy (2)

where

B.= 1'xw(x)cP.-I<x)dx / l'w(x)cP.-I<x)dx (12)

c.= ['xw(x)cP.-,(x)cP.-2(x)dx/[w(x)cP,-~(X)dx
(13)

T max = ~ phabw2['[' W(x, y)dxdy (3)
In this study, weight function w(x) was chosen as 1. Since

polynomial function cP.(x) safisfy orthorgonality condition, it
can be written as

and a function satisfying all geometric boundary conditions
of beam can be written as

To be noted is that polynomial function cP.(x) also satisfies
all boundary conditions, as beam functions do.

(16)

(15)
X (l) =0
X(l) =:cO

X (0) =0
X(O) =0

11 {O ifk*l
w(x)cP.(x)cP,(x)dx= 'f k-/

o a.,1 -

2.3 Orthogonal Polynomials for Various Boundary
Conditions

(1) Clamped-Clamped boundary conditions(C-C)
Boundary condition equations in C-C beam are

where D is flexural rigidity of the plate defined as Eh 3 / {12(1
- v2

)}, v is Poisson's ratio, p is density, h is thickness of the
plate and a is aspect ratio(=:ca/b).

From the minimum total energy principle,

D~~Amn1'l'(Xm"X." YnY,)
m nOD

+a4 (XmX. Yn" Y/')
+ va2(Xm" X. YnY",+XmX." Yn" Y t )

+2(1- v)a2(Xm' X; Yn'Y,')]dxdy

-phW2~~Amn1'l'(XmX. YnY,)dxdy=:cO (5)
m n 0 0

where k=l, 2, "'m: /=1,2, ,.. n
Substitution of deflection function Eq,(l) into energy

expressions Eq,(2) and Eq.(3), and solving Eq.(4) yields the
following equation

Rearranging Eq,(5) yields eigenvalue equation
By applying Eq, (15) to Eq, (16),

~~(Bm~·o-ABmn(")]Amn=:CO
m n

where

(6)
X(X) = P,(x 2-2x3 + x')

where P4 is an arbitrary constant,
Then, the normalized orthogonal polynomial is

(17)

Bmnl' O = ['l'[(Xm"X;'YnY,)

+ a'(XmX. Yn" Y,")
+ va2(Xm"X. YnY/' +XmX;' Yn" Y,))
+2(1- v)a2(Xm'X; Yn' Y/)]dxdy

iJmnl•O = ['['<XmX.YnY,)dXdY

(7-a)

(7-b)

cPo(x) = (x 2-2x3 + x') / ([' X 2(x)dx]+

(2) Simply supported-simply supported boundary
conditions(S-S)

Boundary condition equations in S-S beam are

m, n, k, /=1,2,3, .. ' and }o.=:cphw2a'/D
X (0)=0
X"(O)=O

X (1)=0
X"(l) =0 (19)
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and a function satisfying all geometric boundary conditions
of beam can be written as

and a function satisfying all geometric boundary conditions
of beam can be written as

(20) (32)

By applying Eq. (19) to Eq. (20) By applying Eq. (31) to Eq. (32),

(21)
(33)

where P. is an arbitrary constant.
Then, the normalized orthogonal polynomial is where P. is an arbitrary constant.

Then, the normalized orthogonal polynomial is

(22)

By applying Eq. (23) to Eq. (24),

Boundary conditions B. : k=l, 2, 3,· .. C.: k=2,3,4,'"

0.501190172 0.149998348

F - F 0.498828559 0.028571876
0.501134700 0.099204330

b=x. .1
0.498875039 0.040405048
O.501114267 0.085661817
0.498890421 0.046155425
0.501104575 0.079408668

0.802197802 0.024935218

c - F
0.645534817 0.038924810

~
0.588591081 0.046495104

F=x. .\
0.559995589 0.050964562
0.543421003 0.053805922
0.532867133 0.109440559
0.533546326 0.054313099

0.750249364 0.037453653

F - s 0.583432525 0.050781332
0.541693154 0.055798890

[;xa j 0.525011258 0.058179497
0.516672864 0.059487804
0.511908213 0.060281739
0.508930975 0.060799079

0.500000000 0.032991202
s - s 0.500000000 0.046068627

1=xa
0.500000000 0.052169770

.r
0.500000000 0.055432306
0.500000000 0.057366502
0.500000000 0.058604223
0.500000000 0.059443187

0.565789477 0.026772224

c - s 0.547673218 0.039497719

3 0.535329104 0.046447212
h 0.526948072 0.500650506t=xa

·1 0.521128882 0.053388693
0.516919158 0.055273600
0.513908921 0.056627263

0.499999876 0.022727269

c - c 0.500000238 0.034965034

3 ~
0.499999762 0.042307690

f=X a .1
0.500000238 0.047058831
0.499999762 0.050309600
0.500000238 0.052631565

0.499999762 J 0.054347830

Table 1 Constants B. and C. for various boundary
conditions

(31)

(30)

(29)

(28)

(27)

(25)

(23)

x (1)=0
X"(I) =0

X"(I) =0
X"'(I) =0

x (0)=0
X'(O)=O

X(x) = P.(6x 2 -4x3+ x·)

¢o' x) = (6x 2 -4x 3 +x·) /[[X 2(x) dx Jt

x (0)=0
X'(O) =0

X"(O) ~~O X"(1) ==0
X"'(O)= 0 X'" (I) ==0

(4) Clamped-Free boundary conditions(C-F)
Boundary condition equations in C·F beam are

(3) Free-Free boundary conditions(F-F)
Boundary condition equations in F-F beam ae

By applying Eq. (27) to Eq. (28),

¢o(x) =(Co+ C1X--~-X·+ X 5 _JX 6)/[[X2 (X)dX Jt
(26)

where P. is an arbitrary constant.
Then, the normalized orthogonal polynomial is

(5) CI: roped-Simply supported boundary conditions(C-S)
Boundary condition equations in CoS beam are

and a function satisfying all geometric boundary conditions
of beam can be written as

where P5 is an arbitrary constant.
Then, the normalized orthogonal polynomial is

and a function satisfying all geometric boundary conditions
of beam can be written as
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Table 2 Orthogonal polynomials for various boundary
conditions

Boundary
Functionconditions

C~C ~ ~
(x 2 -2x3 +x')

if>o(x) = 0.039840959P,

S-S ~ if>o(x) (x-2x 3 +x')
0.221825041P,

F-F ---
if>o(x) =

(Co+Cx- ~ x'+x s- ~X6)
192. 4985805Ps

C-F 7-- if>o(x) 6x 2 -4x 3 +x')
1.5202339P,

C~S ~ if>o(x) =
(+x2

- ~ x 3 + x')

0.086831348P,

(C +N 3_N '+ s)
S~F ~ if>o(x) =

2 3X 3x X

192.8900174P,

---~

INPUT; Roots of Legendre polynom­
ials (,. weighting function

a,h,lI, etc. I
SUB 1; Calculating polynomials by

Gram-Schmidt Process
SUB 2; Calculating mass matrix
SUB 3: Calculating stiffness mat~

rix
SUB 4; Calculating eigenvalues

Fig. 2 Flow chart of main program(polynomials by Gram·
Schmidt process)

(6) Simply supported·Free boundary conditions(S-F)
Boundary condition equations in S-F beam are

3. ANALYSIS RESULTS AND
DISCUSSIONS

and a function satisfying all geometric boundary conditions
of beam can be written as

Here, the functions if>o(x) for the free-free and the simply
supported-free boundary conditions satisfy the geometric
boundary conditions, regardless of the arbitrary values of
constants Co, C and C2. But the natural frequencies of a plate
depend on the values of the constants.

In this study, constants Co, C and C2 were determined as
1000/3, - 2000/3 and 1000/3, respectively, by selecting
among values obtained to repetitively compute for several
values. The functions Y(y) are determined in the same
manner, by substituting y into x in the above equations.
Table 1 and 2 list the values of the constants (B. and C.) and
orthogonal polynomials obtained for various boundary condi­
tions, respectively.

3.1 Structures of Computer Program
The computer program developed in this study was based

on numerical analysis developed by using Gram-Shmidt proc­
ess to obtain proper functions for given boundary conditions
of plates and Gauss-Legendre integration method. Compared
to the conventional Simpson formula applicable only to func­
tions with limited orders, Gauss-Legendre quadrature can be
used even for irregular functions.

The main computation steps of this program include:
(1) Input date, i.e, weighting factors and roots of Legendre

polynomials for integration of functions satisfying given
boundary counditions.

(2) Read-in test parameters, i.e, aspect ration (a), Poisson's
ratio (v) and desired number of eigenvalues, etc.

(3) Obtain polynomials by Gram-Schmidt process.
(4) Compute mass matirx.
(5) Compute stiffness matrix.
(6) Analyze mass matrix and stiffness matrix and compute

eigen problems.
Figure 2 shows the flow chart of main program. The

program written in FORTRAN-77 and computations were
performed on MV·8000, IBM-PC XT and AT computers at
Hongik University.

3.2 Numerical Results and Discussions
Since the plate in this study was assumed to have thickness

much smaller than lengths in ~ and r; directions. Stresses in
the thickness direction was neglected. Further, by assuming
the absence of in-plane force, frequency parameters ,l( =
ph(j/a'/D) were obtained for free vibration due to bending
only. Numerical calculations were performed for aspect ratio
a of 0.4, 1.0 and 2.5. Poisson's ratio v of 0.3 was used. The

(35)

(37)

X"(l) =0
X"'(l) =0

x (0)=0
X"(O)=O

where Ps is an arbitrary constant.
Then, the normalized orthogonal polynomial is

X(x) = Ps( C2x + 1~ x 3
- 1

3
0 x'+ x s)

By applying Eq. (35) to Eq. (36),
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number of eigenvalues were determined by the functions
r/J.(x) with k of larger than 5. The computed results for
matrix sizes of more than 25 x 25 or 36 X 36 were compared
with data by Leissa and Dickinson up to the 6th degree of
mode.

The Gauss-Legendre quadrature method used in the present
program removes difficulties in integration of trigonom~tric

functions involved in beam functions. As a result, vibration
analysis by computers become more handy and flexible. As
previously pointed out, the S.S. plate functions suggested by
Dickinson are erroneous for plates with one or more free

edges, although they produce natural frequencies in agree­
ment with those obtained by using beam functions for plates
with simply supported edges. The present orthogonal
polynomials by the Gram-Schmidt porcess eliminate this
problem.

Frequency parameters of plates are listed in Table 3 to 5
for zero, 6 to 7 for one, 8 to 10 for two and 11 for than three
free edges. Values of frequency parameters are quite satisfac·
tory for all permissible boundary conditions in plates, with an
accuracy of 1 to 2% for zero free-edge and 2 to 3% for more
than free-edges. These results demonstrated that orthogonal

Table 3 Frequency parameters/A == wazJPTl5
Boundary Mode Aspect ratio a == a/b(Leissa/present(Dickinson))
conditions No. 0.4 I 1.0 2.5

1. 23.648/23.644 I 35.992/ 35.986( 35.988) 147'.80/147.774 (147.799)
2. 27.817/27.808 i 73.413/ 73.393 ( 73.406) 173.85/173.798 (173.839)

ecce 3. 35446/351J 73.413/ 73.393( 73.406) 221.54/221.35 (221.49 )
4. 46.702/46.805 108.27 /108.22 (108.25 ) 291.89/292.53 (291.83 )
5. 61.554/62.383 131.64 /131.78 (131.62 ) 384.71/389.89 (384.61 )
6. 63.100/63.083 132.24 /132.41 (132.23 ) 394.37/394.27 (394.37 )

Table 4 Frequency parameters /A == waz./Pl15
Boundary Mode Aspect ratio a == a/b(Leissa/present)
conditions No. 0.4 1.0 2.5

1. 11.4487/11.4487 19.7392/ 19.7392 71.5564/ 71.5547
2. 16.1862/16.1862 49.3480/ 49.3481 101.1634/101.1635

SSSS 3. 24.0818/24.1586 49.3480/ 49.3480 150.5115/150.9912
4. 35.1358/35.6669 78.9568/ 78.9569 219.5987/222.9184
5. 45.0576 /45.0576 98.6960/ 99.3042 256.6097/256.6102
6. 45.7950/45.7950 98.6960/ 99.3042 286.2185/286.2190

1. 16.849 /16.848 27.056 / 27.054 105.31 /105.30
2. 21.368 /21.358 60.544 / 60.539 133.50 /133.49

cess 3. 29.236 /29.257 60.791 / 60.787 182.73 /182.86
4. 40.509 /40.930 92.865 / 92.838 253.18 /255.81
5. 51.457 /51.452 114.57 /114.85 321.60 /321.57
6. 55.117 /55.964 114.72 /114.99 344.48 /349.78

1. 12.1347/12.1347 28.9509/ 28.9509 145.4839 /145.4839
2. 18.3647/18.3647 54.7431/ 54.7432 164.7387/164.7387

sese 3. 27.9657/27.9661 69.3270/ 69.3270 202.2271/202.2301
4. 40.7500/40.8996 94.5850/ 94.9853 261.1053/263.9788
5. 41.3782/H.3783 102.2162/102.8070 342.1442/353.7434
6. 47.0009/47.0023 129.0955/129.2993 392.8746/392.8749

Table 5 Frequency parameters ;;.r== waz/ pID
Boundary Mode Aspect ratio a == a/b(Leissa/present)
conditions No. 0.4 1.0 2.5

1. 11.7502/11.7503 23.6463/ 23.6463 103.9227/103.9227
2. 17.1872/17.1873 51.6743/ 51.6744 128.3382/128.3383

sess 3. 25.9171/25.9515 58.6464/ 58.6465 172.3804/172.8091
4. 37.8317/38.2932 86.1345/ 86.1348 237.2502/240.3741
5. 41.2070/41.2079 100.2698/100.8704 320.7921/320.7937
6. 46.3620/46.3652 113.2281/113.5220 322.9642/322.7389

1. 23.440 /23.439 31.829/ 31.826 107.07 /107.04
2. 27.022 /27.017 63.347 / 63.331 139.66 /139.61

eees 3. 33.799 /33.387 71.084 / 71.077 194.41 /194.41
4. 44.131 /44.300 100.83 /100.79 370.48 /271.23
5. 58.034 /59.687 116.40 /116.64 322.55 /322.46
6. 62.971 /62.965 130.37 /130.55 353.43 /353.17
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Table 6 Frequency parameters n = wa2 /PTlJ
Boundary Mode Aspect ratio a = a/b(Leissa/present)
conditions No. 0.4 1.0 2.5

1. 22.577 /22.531 24.020 / 23.938 37.656/ 37.588
2. 24.623 /24.597 40.039 / 40.009 76.407/ 76.138

CCCF 3. 29.244 /29.245 63.493 / 63.253 135.15 /134.79
4. 37.059 /37.990 76.761 / 76.834 152.47 /152.37
5. 48.283 /48.624 80.731 / 80.595 193.01 /192.78
6. 61.922 /61.790 116.80 /116.80 213.74 /213.95

1. 10.1259/10.1262 11.6845/ 11.6808 18.8009/ 18.7869
2. 13.0570/13.0567 27.7563/ 27.7436 50.5405/ 50.5192

SSSF 3. 18.8390/18.9460 41.1967/ 41.1940 100/2321/100.8088
4. 27.5580/28.9628 59.0655/ 59.0561 110.2259/110.1411
5. 39.3377/39.6397 61.8606/ 62.4031 147.6317/147.5515
6. 39.6118/39.7200 90.2941/ 90.9457 169.1026/172.8254

1. 10.1888/10.1894 12.6874/ 12.6874 30.6277/ 30.6277
2. 13.6036/13.6042 33.0651/ 33.0651 58.0804/ 58.0805

SCSF 3. 20.0971/20.1209 14.7019/ 41.7030 105.5470/106.1231
4. 29.6219/30.7874 63.0148/ 63.0160 149.4569/149.4570
5. 39.6382/39.6572 72.3976/ 71.5156 173.1060/176.7855
6. 42.2425/43.0119 90.6114/ 91.2599 182.8110/182.8110

Table 7 Frequency parameters n = wa2/PTlJ
Boundary Mode Aspect ratio a = a/b(Leissa/present)
conditions No. 0.4 1.0 2.5

1. 15.696/15.638 17.615/ 17.543 33.578/ 33.534
2. 18.373/18.344 36.046/ 36.027 66.612 / 66.383

CCSF 3. 23.987/23.965 52.065/ 51.828 119.90 /119.64
4. 32.810/32.814 71.194/ 71.089 150.83 /150.79
5. 44.862/44.261 74.349/ 74.445 187.61 /187.47
6. 50.251/50.088 106.28 /106.14 193.23 /195.52

1. 22.544/22.497 23.460/ 23.385 28.564/ 28.478
2. 24.296/24.271 35.612/ 35.575 70.561/ 70.289

CSCF 3. 28.341/28.321 63.126/ 62.906 114.00 /113.82
4. 35.345/35.736 66.808/ 67.292 130.83 /130.51
5. 45.710/45.972 77.502/ 77.394 159.54 /159.25
6. 59.562/61.760 108.99 /109.47 210.32 /210.60

1. 15.649/15.596 16.865/16.795 23.067/ 23.000
2. 17.946/17.919 31.138/ 31.107 59.969/ 59.724

CSSF 3. 22.902/22.882 51.631/ 51.410 111.95 /111.83
4. 30.892 /31.332 64.043/ 64.559 115.11 /114.87
5. 42.108/42.542 67.646/ 67.545 153.24 /153.02
6. 50.222/50.073 101.21 /101.73 189.49 /191.88

Table 8 Frequency parameters n =wa2 /PTlJ
Boundary Mode Aspect ratio a = a/b(Leissa/present)
conditions No. 0.4 1.0 2.5

1. 1.3201/ 1.3168 3.3687/ 3.3600/( 3.6991) 8.251/ 8.230( 10.807)
2. 4.7433/ 4.7250 17.407 /17.298 /(17.334 ) 29.646/ 29.531 ( 30.130)

SSFF 3. 10.362 /10.404 19.367 /19.273 / (19.393 ) 64.760/ 65.023( 64.613)
4. 15.873 /15.783 38.291 /38.185 / (38.256 ) 99.206/ 89.643/( 99.249)
5. 18.930 /19.542 51.324 /51.514 /(51.249 ) 118.31 /122.14 /(117.95 )
6. 20.171 /20.481 53.738 /54.033 /(53.677 ) 126.07 /128.01 (126.09 )

1. 3.9857/ 3.7968 6.9421/ 6.9268/ ( 7.1631) 24.911/ 24.855( 26.039)
2. 7.1551/ 7.1442 24.034 /23.9428/ (23.974 ) 44.719/ 44.65l( 45.081)

CCFF 3. 13.101 /13.306 26.681 /26.610 /(26.687 ) 81.879/ 83.166( 81.730)
4. 21.844 /22.212 47.785 /47.755 /(47.753 ) 136.52 /138.826(136.24 )
5. 22.896 /23.717 63.039 /63.918 /(62.967 ) 143.10 /148.23 (142.99 )
6. 26.501 /26.519 65.833 /67.079 / (65.772 ) 165.63 /165.75 (165.64 )
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Table 9 Frequency parameters ;;.r= wa2.;pj15

101

Boundary Mode Aspect ratio a = a/b(Leissa/present)
conditions No. 0.4 1.0 2.5

1. 3.8542/ 3.8450 5.3639/ 5.3500 10.100/ 10.082
2. 6.4198/ 6.4033 19.171 /19.067 35.157 / 35.037

CSFF 3. 11.578 /11.616 24.768 /24.673 74.990/ 74.779
4. 19.767 /20.623 43.191 /43.087 99.928/ 99.319
5. 22.521 /22.563 53.000 /54.214 127.69 /127.48
6. 26.024 /26.024 64.050 /64.913 135.45 /141.49

1. 15.382 /15.367 15.285 /15.260 15.128 / 15.133
2. 16.371 /16.305 20.673 /20.598 37.294/ 37.242

CFSF 3. 19.656 /19.342 39.775 /40.345 49.226/ 50.963
4. 25.549 /26.153 49.730 /50.485 83.325/ 83.077
5. 34.507 /35.229 56.617 /56.321 103.14 /103.44
6. 46.435 /46.901 77.368 /78.358 143.68 /143.28

Table 10 Frequency parameters IX = wa2.;pj15

Boundary Mode Aspect ratio a = a/b(Leissa/present)
conditions No. 0.1 1.0 2.5

1. 9.7600/ 9.7737 9.6314/ 9.6388 9.4841/ 9.4914
2. 11.0368/11.1321 16.1648/16.1350 33.6228/ 33.6229

SFSF 3. 15.0626/15.2951 36.7256/37.1786 38.3629/ 38.7143
4. 21.7044/22.3887 38.9450/39.2614 75.2037/ 75.2041
5. 31.1771/30.1157 46.7381/46.7483 86.9684/ 86.3923
6. 39.2387/40.8327 70.7401/67.0440 130.3576/350.8936

1. 22.346 /22.382 22.272 /22.307 22.130 / 22.209
2. 23.086 /23.031 26.529 /26.442 41.689 / 41.685

CFCF 3. 25.666 /24.944 43.664 /44.221 61.002 / 62.096
4. 30.633 /:31.169 61.466 /62.668 92.384 / 92.496
5. 38.687 /40.111 67.549 /67.254 119.88 /126.19
6. 49.858 /50.484 79.904 /82.158 157.76 /158.11

Table 11 Frequency parameters IX= wa2.;pj15

Boundary Mode Aspect ratio a == a/b(Leissa/present)

conditions No. 0.4 1.0 2.5

1. 3.5107/ 3.5273 3.4917/ 3.5245 3.4562/ 3.5233

2. 4.7861/ 4.7746 8.5246/ 8.5443 17.988 / 17.987

CFFF 3. 8.1146/ 8.1870 21.429 /22.029 21.563 / 22.019

4. 13.882 /14.248 27.331 /26.963 57.458 / 57.515

5. 21.638 /21.423 31.111 /31.216 60.581 / 60.912

6. 23.731 /23.654 54.443 /55.643 106.54 /106.13

1. 2.6922/ 2.6865 6.6480/ 6.6362 14.939 / 14.817

2. 6.5029/ 6.4276 15.023 /15.840 16.242 / 16.217

SFFF 3. 12.637 /12.976 25.492 /25.365 48.844 / 48.932

4. 15.337 /15.420 26.926 /25.980 52.089 / 51.930

5. 17.510 /17.863 48.711 /50.389 97.225 / 96.676

6. 21.699 /20.132 50.849 /50.923 102.34 /102.26

1. 3.4629/ 3.4312 13.489 /13.540 21.643 / 21.492

2. 5.2881/ 5.1684 19.789 /19.284 33.050 / 32.960

FFFF 3. 9.6220/ 9.8751 24.432 /23.937 60.137 / 60.542

4. 11.437 /12.125 35.024 /35.727 71.484 / 71.635

5. 18.793 /19.236 35.024 /35.727 117.45 /118.15
6. 19.100 /20.042 61.526 /62.138 119.38 /119.74
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polynomials proposed in this study could be utilized very
conveniently to solve vibration problems of plates. The
present method is further considered to be applicable to
plates with arbitrary shape(such as folded plate and corru­
gated plate) of which vibration analysis have been difficult
due to the complexity of beam funtions.

4. CONCLUSIONS

In this study, orthogonal polynomials obtained by the
Gram-Schmidt process were used as displacement functions.
The present method enabled to overcome complexity of
computer caculations incurred by using conventional beam
functions. Computed results demonstrated an accuracy of less
than 3%, compared with those obtained by other functions.
This new displacemet function can be used not only to obtain
baseline data of dynamic problems by analyzing all boundary
conditions, but also to approach vibration analysis of plates
with arbitrary shape.
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